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Abstract—Internet-of-Things (IoT) applications have been
challenged by vast emerging security threats. The increasing
number of connected devices on an IoT network may encounter
potential attacks while relaying messages over the public Internet.
Security methods in traditional wireless networks are often
specific to single architectures and are therefore ineffective in
solving security issues that may surface on hybrid IoT networks.
In this paper, we propose a software defined end-edge-cloud
network architecture for smart IoT applications. We apply a
deep-learning (DL) based intrusion detection system (IDS) to
secure this architecture. We implement this system based on
the Caffe framework and train several popular convolutional
neural networks (CNNs) including LeNet, AlexNet, and ResNet-
50. We evaluate the performance of this system in terms of
accuracy, precision, recall, and F1 score. We then investigate the
FPGA-based acceleration technique to reduce the training and
runtime of CNNs. We implement the FPGA acceleration based
on a Xilinx KU115 board which achieves efficient performance
per watt while training and deploying the IDS. For accelerating
CNNs on the FPGA, we investigate a Winograd convolution
engine in the Xilinx SDAccel development environment which
offers automation schemes for accelerating computations. Our
preliminary study may provide some insights into the experi-
mental support for advancing IoT research and development for
securing various smart applications.
Index Terms—Intrusion Detection, End-edge-cloud Network

Architecture, Software Defined Networking, Smart Classroom

I. I
Security is one of the major aspects on Internet devices

since security measures are only realized after launching a new
technology. The physical objects in IoT are more sensitive to
security, and contain embedded systems to communicate be-
tween machine-to-machine and machine-to-people. IoT poses
potential risks to the traditional wireless network devices such
as advanced encryption standard (AES) public/private key
exchange methods, unprotected transmission control protocol
(TCP)/Internet protocol (IP) networks from intrusion through
devices, and unprotected pre-shared keys from reverse engi-
neering through a micro-controller unit (MCU) debugger [1].
Software defined networking (SDN) offers various benefits to
IoT; however, several studies have revealed security holes in
SDNs which may result in security threats such as:

• Selfish attacks which generate more flows and consume
larger bandwidth.

• Flow-table overloading which mount DDoS attacks.
• An SDN switch can be compromised and behave like
robot.

• An SDN network being unable to mitigate and detect
advanced persistent threats.

• Match-action algorithm failures to reveal matching en-
tries for invoking deep packet inspection.

Security risks in software defined networks (SDN) are
largely due to lacking of integration of existing security
mechanisms and SDN’s inability to provide deep packet
inspection. This leads to demands for external mechanisms
to introduce packet risk analysis before routing to the next
levels of wireless networking. SDN security requires support
for authentication and authorization classes of the network
administrators at every plane, but the proceeding results may
prevent access to flow management policies. This also de-
mands constructing novel security mechanisms specific to the
SDN protocol. Although SDN security is still at an early
stage for integration into IoT, we envision that comprehensive
studies will be necessary, which brings forth the motivation
of our study on deep-learning based security methods.
A network intrusion detection system analyzes and gathers

information on multiple levels of a computer or network
and identifies security breaches including “intrusions”, attacks
outside the network area and “misuse”, attacks from within the
network. A vulnerability assessment is normally conducted to
examine the security. Data have been considered the most im-
portant aspect to protect in organizations [2] and operations are
only carried out once the data are secured. Data are however
under constant threats from malicious attacks as hackers and
crackers develop new ways to breach organizational networks.
SDN offers control knobs for fast reaction to security threats,
granular traffic filtering, dynamic security policy deployment,
and flexible traffic management. In this paper, we propose
a software defined end-edge-cloud network architecture for
smart IoT applications. In particular, we apply a deep-learning
(DL) based intrusion detection system (IDS) to secure this
architecture and conduct a performance evaluation of this
proposed IDS system.
The organization of this paper is as follows: We first

propose a software defined end-edge-cloud architecture for
the emerging smart applications in Section II. In Section III,
we study security mechanisms for the proposed architecture.
In Section IV, we conduct a performance evaluation study
for the proposed system. Section V discusses some recent
research progress in security challenges for software defined
IoT networking. Section VI concludes this paper.
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II. A S D E -E -C A
A. Smart Classroom
The prototype system of the software defined end-edge-

cloud network architecture [3] can be implemented by integrat-
ing several open-source projects including OpenFlow, Open-
NetVM, Floodlight, Odin, and Caffe. The smart classroom ap-
plication is a typical scenario for this architecture. An artificial-
intelligence-enabled smart classroom may contain a variety
of end devices with sensors, which places new demands on
computation at the edge due to the tight delay constraint. The
devices may stream a large amount of input data and are ideal
targets for machine learning applications. Smart classrooms
enhance learning among students and communication between
students and teachers. This requires real-time sensing and
machine intelligence using advanced algorithms and optimized
software frameworks. In our edge system design for smart
classroom, we have integrated OpenVSwitch for managing
the inner network using the OpenFlow protocol and we have
integrated the Caffe deep learning framework into the design
for machine learning support on the smart edge system. The
computation units are virtualized to be accessible by the
devices on the network. The guiding system may provide
various learning services.

B. DL-based IDS Design
A model representation of our deep learning system is illus-

trated in Fig. 1. We consider a semi-supervised deep learning
system with multiple hidden layers where each layer computes
a non-linear evolution of the previous layer. When a new
packet arrives at the switches, the packet headers are extracted
from OpenFlow (OF) packets by an SDN controller which
forwards them to the deep learning IDS for analysis. The
proposed deep learning FPGA framework can also analyze
the network performance when packets are classified at the
controller to specific ports on a switch and then generate a
weight matrix to assist the controller in determining optimal
destination routes.

C. Framework Design
SDN security risks are largely due to its inability to provide

deep packet inspection, attacks can occur at either the data
plane or the control plane. An optimal solution can also be
realized through training the algorithm to monitor multiple
vectors on packet_in messages arriving at the controller as a
result of flow-misses from unknown sources which will always
forward all subsequent packets to the controller for computa-
tions. If packets arrive from a classified malicious user, the
system may automatically block all subsequent requests and
quarantine the host. To avoid false-alarms in the algorithm,
our IDS depends on every packet to classify attacks and for
evolving the system. Once an attack is classified, IDS may
alert the controller.
Our deep learning algorithm intelligently collects network

statistics on all activities between two node pairs; source and
destination. Whenever a new device joins the network or
sends a flow to the system for the first time, the controller

starts building a trust table between nodes on the internal
and external network deeply analyzing the activity of nodes
on different layers of the network based on a number of
parameters such as the frequency of message exchanges and
interactions, this will allow us to train a deep learning system
with sufficient data to determine the purpose of each packet
and assist the controller with efficient, and secure operations
as shown in Fig. 1.

III. A FPGA- IDS
A. Overview
We have used the KU115 Xilinx® Kintex® Ultrascale

FPGA platform to implement the Caffeinated FPGAs frame-
work. We have integrated this framework into Caffe in a
similar fashion to the GPP and GPU brews based on the
official Caffe release. The Cuda back-end and OpenCL have
also been implemented to support the FPGA execution. The
OpenCL backend synchronizes the memory between the host
processor and FPGA through the host codes. The device
codes also run on the FPGA platform to enable the deep
learning implementation. Individual layers for accelerating the
AlexNet CNNs are created using the OpenCL device kernel.
The Caffeinated FPGAs framework enables the acceleration by
creating “forward_fpga” propagation functions in Caffe similar
to the existing “forward_gpu” and “forward_cpu” functions.
This results into three sets of the AlexNet layer implementation
in Caffe that enables three brew options at runtime:

• C++ based brew for GPP execution;
• CUDA brew for GPU execution;
• OpenCL brew for FPGA execution.
The brew options can easily be selected by users at runtime

by specifying the desired platform with the following argu-
ments for “-gpu=1” for using GPUs, “-ocl=1” for FPGAs, and
“-cpu=1” for CPU runs. The numeric value index specifies the
device number when multiple options for one architecture are
available.

B. Winograd Convolution
Our framework uses a Winograd Convolution Engine to

perform column-wise and row-wise partial transforms. We
have integrated this framework on a KU115 FPGA platform.
We followed the Xilinx SDAccel OpenCL FPGA program-
ming model to increase the number of computational elements
for correlative distribution of computations while exploiting a
combination of parallel computing (i.e. data, model, pipeline,
and computation) to improve the system performance. Follow-
ing the distributed deep neural network (DDNN) architecture,
our trained DCNN is distributed locally at the edge across the
FPGA and GPP, and onto a cloud server with GPU and GPP
resources.

X = AT dB (1)

A Wingograd Transpose equation used in the Caffeinated
FPGAs framework is shown in Equation (1) showing the input
tile transformation of the filter transformation. X is an (m+

1385



Fig. 1. The IDS architecture for software defined wireless networks

r−1)×(m+r−1) transformed data matrix; d is an (m+r−
1)×(m+r−1) input matrix; B is an (m+r−1)×(m+r−1)
transform matrix.
For output Y = (3×3, 5×5) input tile, d is 7×7 generated

by a sliding window. After the transformation, the tile is stored
back into the memory. Four times more memory is required
to handle the overlaps in the tiles.

C. Data Preparation

In this work, we propose a data preparation method for
CSV-type data and generate a script to normalize the data
and perform the conversion from CSV to image for the CNN
computation. The CSV type data can be logged from multiple
input devices sources from networks such as AI-enabled smart
classroom components and other input sensors. For each type
of IoT network, compatible executables can be developed for
specific applications to log the data into specified formats
as a step before the image conversion. As a case study, we
implement a real-time network intrusion detection system. We
developed a feature extractor to log several parameters on IP
packet headers. We then performed several training sessions
on popular CNNs including LeNet, AlexNet, GoogleNet, and
ResNet for intrusion detection. Fig. 2 and Fig. 3 provide a
detailed illustration of the data preparation process and the
resulting image samples.

D. Normalization Function

We proposed a normalization function to scale CSV type
data between 0 and 255 to reflect gray scale image pixels.
The NSL-KDD dataset [4] contains symbolic and continuous
features. For symbolic features, we have simply represented
the data by numeric values. For example, the protocol field has
three values (tcp, udp, icmp), we first represent these features
by numeric values (1, 2, 3) respectively. Once all the symbolic
data has been numerically represented in the script, we then
use the normalization function to normalize a column vector
(x) in a CSV file between 0 and 255. The new column vectors
(x′) are then used to generate grey-scale image pixels using

Fig. 2. Data Preparation

the OpenCV library. Algorithm 1 illustrates the functions of
our data conversion script.
Algorithm 2 depicts the steps involved in the functionality

of our NIDS. OpenFlow messages trigger different events
in Floodlight. The Packet_In handlers perform most of the
actions compared to other service modules. When a packet-
in message is dispatched from a switch, the controller is
responsible for handling the packet to install the necessary
flow table rules using the FlowMod message. The core module
in this project implements a Packet_In listener to manage all
Packet_In messages to be accessed by other service modules
through the REST API in Floodlight.

IV. P E

We conducted the experiments on a Dell Optiplex 7040
workstation. Caffe was implemented as a deep learning frame-
work. We performed several training sessions on popular
CNNs including LeNet, AlexNet, and ResNet for intrusion
detection on the NSL-KDD dataset. We used 100 epochs on
a 256 batch size to train our CNN models. We used “Adam”
and other Caffe solver with a gradient decent optimizer.
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Algorithm 1: Convert CSV to PNG
Input: new packet in CSV
Output: normalize the packet data and convert to an image
begin
packet in list = 0

while packet < 1000 do
Receive incoming packets from the switch

//Convert symbolic type data
Switch convert symbol begin
Case x : 1
Case y : 2
Case z : 3

break;
end
for Column = x do

xmin = x
xmax = x

end
if x < xmin then

xmin = x;
else x > xmax

xmax = x;
end

end
end

Algorithm 2: Packet In Handler Module
Input: new packets at the network controller
Output: Extracted packet headers (TCP, UDP, ICMP)
begin
packetin_list← 0
trust_tbl← 0
while PIR Module buffer is not full do

Receive incoming packets from the switch
Store packet headers in packeti_n list
if the packet is a flow-table miss then
Compute the packet source pkt src
Compute the trust table trust_tbl
if pkt src trust_tbl then
Install a flow rule in the switch
else flow trust_tbl
Add a flow in trust_tbl
Output the packet to the outport

end
else
Output the packet to the outport

end
else
Quarantine the node for inspection
Trigger a security breach

end
end

Fig. 3. The NSL KDD conversion procedure

A. Security Performance Metrics
For our NIDS system, accuracy was the major metric for

comparing the security performance with other methods. Other
considerable indicators include precision, recall, and F1 score.
Preceding our experiments on the IDS, we developed a log
function to achieve the column normalization after obtaining
a minimum and maximum of every column. We tested the
efficiency of this function in retaining the data integrity during
the conversion with the minimum complexity. This script
converts the 148, 517 samples of training and test data in less
“20s” in our system.

B. CNN Model Training
We completed the initial training and testing on a LeNet

Model in Caffe using the NSL-KDD image dataset which we
have pre-processed. The full model Test set “KDDTest+” with
all the old and new attacks achieves an accuracy of 75.45%
which is average when compared to other Deep Learning
models. Next, we trained the AlexNet model for deep learning
in CPU_only mode. This is a middle-scale DCNN model. The
model training lasted for 4 weeks on our CPU architecture
running a full 360, 000 iterations using “step” learning rate
policy. The accuracy was 76.67% on the “KDDTest+” Test
set. We also completed the initial ResNet50 training 4. The
performance fluctuated for every instance using the default
learning algorithm. We paused the training at around 12000
iterations and experimented with a multi-step learning algo-
rithm. The performance improved and the accuracy stabilized
around 82.83% which is very good when compared with the
related works.

C. Comparative Analysis
We used two test datasets to evaluate the CNN model

performance. Table I shows the details of the training and
the test datasets. The Test+ dataset contains all the data
misclassified by the 21 learners. The accuracy of our CNNs
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TABLE I
P

CNN Model Test Accuracy Precision Recall F1 Score
LeNet NSL-KDD Test + 79.24% 82.99% 68.55% 90.36%
AlexNet NSL-KDD Test + 79.54% 82.81% 62.42% 79.27%
ResNet 50 NSL-KDD Test + 82.83% 92.99% 100% 92.52%
ResNet 50 NSL-KDD Test + [5] 81.84% 81.84% 100% 90.01%

Fig. 4. ResNet optimization test

(LeNet and AlexNet) has shown that the average performance
between 77 − 80%. Our ResNet50 DCNN training results,
however, have demonstrated between 80 − 83% accuracy on
a binary classification. Table II shows the accuracy of our
models.

TABLE II
A

Classifier Test+ Test-21
J48 81.05% 63.97%
Naive Bayes 76.56% 55.77%
NB Tree 82.02% 66.16%
Random forest 80.67% 62.26%
Random tree 81.59% 58.51%
Multi-layer Perception 77.41% 57.34%
SVM 69.52% 42.29%
ResNet50 [5] 79.14% 81.57%
GoogLeNet [5] 77.04% 81.84%
Proposed LeNet 79.24% 80.88%
Proposed AlexNet 79.54% 81.42%
Proposed ResNet 80.15% 82.17%

In this experiment, we have analyzed as mentioned in
other works that the uneven distribution of the Test-21 data,
CNNs tend to data into attack data classes. The percentage
of anomaly traffic is small in practice. The IDS seems to
recognize attacks in different scenarios. The performance as
shown in Table I and Fig. 5 illustrates that our proposed
method achieves very good accuracy when compared with
other methods. Tavallaee et al [6] have measured the NSL-

Fig. 5. The NIDS Accuracy on the Adam Solver

KDD accuracy using other methods.

V. R W
A. Security Advances for Software Defined Wireless Networks
Wireless local area networks have becoming more dense and

require more infrastructure coordination [7]. Software defined
networking has been proposed to introduce programmability
to wireless networks [8], [9], [10], [11]. Kloti et al. in [12]
describe many DoS attacks on the OpenFlow protocol. In
ProtoGENI [13], a network testbed has been examined to
analyze a number of attacks. Many techniques have proposed
for detecting various threats for SDN. From the number of
investigations taken, the control and data layers are major
points of attacks. Flauzac et al. [14] have proposed a multiple
SDN controller architecture for ad-hoc networks based on
the assumption that equal interaction is default on an SDN
controller, which grants it full access to the switch and ensures
all controllers have the same rules.

B. Intrusion Detection
Using machine learning techniques, intrusion detection sys-

tems can make quite accurate predictions. The most famous
intrusion dataset is the KDD Cup-99 [4] which was produced
to distinguish between attacks and normal connections. The
intrusions were simulated on a military network environment
in 1999. The dataset has been improved over the years and
the latest data is under NSL-KDD. In [2] Roy et al. have
developed a multi-layer feed forward network with 400 hidden
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layer output and input neurons that provide representations in
deep learning for an IDS using rectifier and softmax activation
functions. In [15] Gao et al. implemented a NIDS on the
KDD-Cup 99 dataset using a RBM based DBN with a neural
network as a classifier. Kang et al. [16] proposed a NIDS for
in-vehicular network security which used DBN and results in
an improved detection accuracy compared to former methods.
In [17], Javaid et al. implemented a deep learning based NIDS
using NSL-KDD dataset by employing a self-taught learning
algorithm using a sparse auto-encoder instead of RBM for
feature reduction and also separated the evaluation for the
training and testing datasets.
C. FPGA-based Deep Learning
Many implementations of deep learning on FPGAs have

focused on image recognition. Design size has been one of
the most limiting factors for deep learning techniques being
implemented on FPGAs due to the trade-off between design
reconfiguration and density which makes the FPGA circuits
less dense than hardware alternatives and the implementation
of large neural networks impossible [18]. The best notable
performance for forward propagation of CNNs on FPGAs
was achieved by a Microsoft team. Krizhevsky et al. in
[19] reported a throughput of 134 images/second at a 25W
energy consumption rate on the ImageNet 1K dataset, a
throughput 3× that of the results reported by Zhang et al.
[20] using a “Xilinx Virtex 7 485T”. The performance has been
reported to increase by using other top-line FPGAs such as the
“Arria 10 GX1150” while consuming the same power up to
233 images/second when compared to other high-performing
GPU implementations of Caffe + cuDNN which perform at
500 − 824 images/second while consuming 235W of power.
This is achieved on Microsoft designed FPGAs for data-center
applications [21].

VI. C
In this paper, we propose a software defined end-edge-cloud

network architecture for smart IoT applications. We apply a
deep-learning (DL) based intrusion detection system (IDS) to
secure this architecture by implementing this system based
on the Caffe framework and training several popular Convo-
lutional Neural Networks (CNNs) including LeNet, AlexNet,
and ResNet-50 to examine the performance issues. We also
investigate the FPGA-based acceleration technique to reduce
the training and runtime of CNNs based on a Xilinx KU115
board and the Xilinx SDAccel development environment. Our
preliminary results demonstrate the technical feasibility of the
software tool chain and the hardware platform for accelerating
secure programmable edge network system for emerging smart
applications.
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